
4
MSL Driver Procedures

DriverInitialize . 4-1
Allocate Resource Tags . 4-2
Determine Hardware Options . 4-2
Register Hardware Options . 4-2
Set Hardware Interrupts . 4-3
Initialize the Host Adapters . 4-3
Verify Host Adapter Operability . 4-3
Load Coprocessor Firmware . 4-4
Register the Driver . 4-5
Schedule Callbacks . 4-5
Return Initialization Status . 4-5
Error Reporting and Recovery . 4-6

DriverControl . 4-13

DriverSend . 4-16
DriverBuildSend . 4-19
DriverEmergencySend . 4-22

DriverISR . 4-25
Receiving a Message Packet . 4-26
Receiving an Acknowledgement . 4-28
Receiving an Emergency Notification 4-29
Handling Receive Errors . 4-30
Transmit Complete . 4-31
Transmit Errors . 4-31

DriverHoldOff . 4-32
DriverIntHoldOff . 4-32
DriverTimeout . 4-35

DriverRemove . 4-38

Chapter 4 • MSL Driver Procedures

DriverInitialize

The MSL driver must provide an initialization procedure that performs
the tasks involved in hardware registration, initialization, and testing.
The operating system calls the DriverInitialize routine each time a load
command is issued for the driver.

Drivers are typically written so that a load command must be issued for
each host adapter. In a future release of NetWare SFT III, loading
multiple MSL adapters will be supported. (See the Dual Mirrored
Server Links description in Chapter 1.) Drivers should also allow the
operator to load the driver with a single specified adapter, to selectively
enable only the desired host adapters.

DriverInitialize must determine and reserve hardware configuration
options. It also exchanges any required information with NetWare and
brings the adapter up to operational mode. If DriverInitialize fails to
initialize the adapter, it returns an error status to the operating system
and the driver’s code is unloaded.

The DriverInitialize procedure performs the following tasks:

• Allocate resource tags
• Determine the hardware configuration
• Register the hardware configuration options
• Set hardware interrupts
• Initialize and test adapter hardware
• Register the driver with the OS
• Schedule callback events for error detection and recovery
• Report and recover from any initialization errors

If initialization fails:
-Release hardware options
-Release interrupts
-Cancel scheduled callback events
-Return allocated memory

• Return initialization status to the caller (OS)

The remainder of this section describes the DriverInitialize tasks in
detail. An example of an MSL driver’s initialization procedure can be
found in the MSL driver listing in Appendix E.

Version 1.00 4 – 1

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Allocate Resource Tags

Resource tags are used by the operating system to identify and control
various hardware and system resources. Drivers are required to
allocate several types of resource tags before making certain system
calls. The resource tags are then validated by the OS when the calls
are made and are used to track the requested resource. If a module
fails to free up allocated resources prior to termination then the OS can
perform the cleanup operations so the resources are not lost to the
system.

Normally the driver acquires all needed resource tags before performing
any other driver initialization functions. The resource tags are not
deallocated by the driver or returned to the operating system, since the
OS routines accomplish this automatically upon module termination.
(See the AllocateResourceTag description in Chapter 5 for details.)

Determine Hardware Options

The driver must determine the hardware configuration information
needed for the IOConfigurationStructure. This includes options such as
the slot number for MCA or EISA adapters, the base port for
programmed IO adapters, memory decode addresses for shared RAM
adapters, interrupt numbers, and DMA channels. In MCA or EISA
machines, the driver can obtain this information directly from the
system once the slot number has been identified as described in
Appendix C.

The driver uses the ParseDriverParameters procedure to obtain and
validate hardware configuration options entered on the load command
line and to query the operator for any required parameters which were
not specified. The ParseDriverParameters procedure requires an
AdapterOptionStructure containing the valid options for the hardware
configuration. A NeedsBitMap is also required to indicate which
specific hardware options must be obtained either from the command
line or from the console operator. The selected values are used to fill
in the adapter’s IOConfigurationStructure. (See the ParseDriver-
Parameters description in Chapter 5 for details.)

Register Hardware Options

When all needed information has been determined for the driver’s
IOConfigurationStructure, the DriverInitialize routine must register the
hardware options with the operating system. The OS is informed of the
configuration using the RegisterHardwareOptions procedure. This
routine reserves the hardware configuration for the adapter and will
notify the driver of any conflicts with existing hardware in the system.

4 – 2 Version 1.00

Chapter 4 • MSL Driver Procedures

Set Hardware Interrupts

Driver initialization routines must allocate requested interrupts by
calling SetHardwareInterrupt.

Interrupts can be shareable or non-shareable. The driver indicates that
it can share the interrupt by setting the appropriate bit in the CFlags
field of the IOConfigurationStructure and by setting the ShareFlag

parameter passed to the SetHardwareInterrupt routine. If operating in
shared mode, the driver’s ISR must provide logic for handling shared
interrupts. It must determine if an interrupt is for an adapter
associated with the driver and return this indication back to the OS.

For further information see the SetHardwareInterrupt description in
Chapter 5 and the DriverISR section later in this chapter.

Initialize the Host Adapters

The driver can only initialize the host adapter and register it with the
OS after the necessary hardware options have been validated and
reserved. The driver must not issue instructions to I/O ports, access
shared RAM, etc..., until hardware registration is completed, unless
they are standard MCA or EISA system ports used to determine the
slot configuration.

The procedure for initializing an adapter depends entirely on the
requirements for the particular hardware design. NetWare places no
specific requirements on adapter initialization, except that when
DriverInitialize returns, the host adapter should be fully initialized and
ready for operation. It may even require procedures such as loading
host adapter firmware.

Verify Host Adapter Operability

The driver should test the host adapter during initialization to ensure
that it is operational. If the host adapter exhibits a problem or in any
way fails testing, it should not be registered with the OS. A brief
message describing the problem should be displayed for the operator’s
benefit and the driver should proceed with the error recovery steps
outlined later in this chapter.

Version 1.00 4 – 3

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Load Coprocessor Firmware

NetWare custom data can be anything that might be required by a
driver. For example, the driver may need to read in firmware to be
loaded into a co-processor board. To define the custom data file, use the
CUSTOM keyword in the driver’s linker definition file followed by the
filename (custom data files are simply appended to the driver module).
NetWare passes the custom data file’s handle, starting offset, size, and
the ReadRoutine address to the initialization procedure, where it must
be saved upon entry if custom data is going to be read by the driver.
The initialization procedure can read the file into memory by calling the
ReadRoutine using the syntax shown below:

ReadRoutine (
LONG CustomDataFileHandle,
LONG *CustomDataOffset,
LONG *CustomDataDestination,
LONG CustomDataSize);

The driver must supply the destination in memory according to the
needs of the host adapter. Some adapters only support word or
doubleword moves to or from shared RAM, and will not support moves
with other widths or alignments.

The ReadRoutine does byte moves to the supplied destination logical
address. The driver may need to allocate a block of memory to read the
custom data into prior to moving it to the destination shared RAM in
the adapter using word or doubleword moves. The ReadRoutine returns
an error code if the driver attempts to read beyond the end of the
custom data.

The custom data file is not interpreted in any way by NetWare, and
may be in any form. The custom data file is typically raw machine code
that can be downloaded to a coprocessor card, and may be prepared in
any way desired, using any language processors or linkers desired.

4 – 4 Version 1.00

Chapter 4 • MSL Driver Procedures

Register the Driver

The driver must register with the operating system by calling the
NetWare routine RegisterServerCommDriver (described in detail in
Chapter 5). Four entry points into the MSL driver are passed with this
call:

• DriverSend

• DriverBuildSend

• DriverEmergencySend
• DriverControl

In addition, an MSLResourceTag is required which allows the OS to
track all of the MSL-requested OS resources.

Schedule Callbacks

Drivers use the ScheduleNoSleepAESProcessEvent routine to schedule
callbacks to the DriverTimeOut procedure. This driver procedure is
used to detect and recover from timeout conditions. After the card is
operational, the callback procedure monitors the adapter’s performance.
If a significant delay occurs in the adapter’s operation, the procedure
may intervene and cause a retry or notify the OS of the error.

An AESEventStructure and AESProcess resource tag are required to
schedule the driver callback. (See the DriverTimeOut description later
in this chapter for more information.)

Return Initialization Status

A return status of zero in EAX indicates a successful initialization. If
the driver returns a non-zero status (indicating an error), the driver is
removed from server memory. This allows a module’s initialization
routine to prevent the OS from using the driver.

Version 1.00 4 – 5

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Error Reporting and Recovery

Reporting Errors - Errors that occur during initialize can be reported

at the console using the support routine OutputToScreen or optionally
QueueSystemAlert (see Chapter 5). The driver is passed a
ScreenHandle when NetWare calls the DriverInitialize routine. The
handle should be saved by the driver for use only during the driver
initialization routine.

Note: The OS routine QueueSystemAlert can be called at any time from any
level of execution, including from an ISR, and does not require a Screen
Handle.

Recovering from Errors - If an error occurs during initialization, all

hardware resources allocated from the server must be returned using
DeRegisterHardwareOptions. The driver must also free allocated
interrupts by calling ClearHardwareInterrupt and return any memory
that has been allocated. Any scheduled AES timers must also be
canceled by calling CancelNoSleepAESProcessEvent. In addition, the
adapter should be disabled so that it cannot interfere with the operation
of the server.

4 – 6 Version 1.00

Chapter 4 • MSL Driver Procedures

DriverInitialize Summary

1 Save any parameters passed on the stack from the OS that are
needed for later use.

2 Allocate all resource tags required by the driver.

3 Verify that the operator is not attempting to load more adapters
than the driver will support.

4 (Optional) Call GetHardwareBusType to determine the bus type of
the processor. This is used by drivers which can support cards on
multiple bus types. It may also be desirable to verify that the bus
type of the server is compatible with the driver being loaded.

5 (Optional) Allocate any required memory (if not statically defined
in the driver data segment) using AllocSemiPermMemory.

6 Determine the Hardware Configuration

(a) For MCA or EISA machines, search the slots for the adapter ID
and build a slot list for the AdapterOptionStructure.

(b) Get the hardware configuration information or slot to use by
calling ParseDriverParameters with the appropriate NeedBitMap

value and AdapterOptionStructure. This call fills in the
IOConfigurationStructure with the selected values.

(c) For MCA or EISA adapters the slot field in the IOConfiguration-
Structure now contains the appropriate slot number which can
be used to determine the configuration information by...

• reading the POS registers for MCA
• reading the configuration block for EISA

7 Call RegisterHardwareOptions to reserve the options and check for
any hardware conflicts.

8 Register the driver’s ISR by calling SetHardwareInterrupt.

9 Initialize and test the adapter hardware.

10 (Optional) Read firmware or other custom data from the Custom
Data File and load into the coprocessor. Start the coprocessor
executing the loaded firmware.

11 Register the driver with the OS using RegisterServerCommDriver.

Version 1.00 4 – 7

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

12 Initialize two global variables:

• MaxCommDriverDateLength

• PacketSizeDriverCanHandle

14 Schedule driver callback timers (for driver timeout recovery) using
ScheduleNoSleepAESProcessEvent or ScheduleSleepAES-
ProcessEvent.

15 Return initialization status to the operating system.

Error Steps

A Cancel any active driver callback AES timers using either
CancelNoSleepAESProcessEvent or CancelSleepAESProcessEvent,
depending on the AES timer type.

B Unhook the driver’s ISR by calling ClearHardwareInterrupt.

C Release registered hardware resources to the OS by calling
DeRegisterHardwareOptions.

D Return any dynamically allocated memory back to OS by calling
FreeSemiPermMemory.

E Return to the OS with an error status (EAX = non-zero value).

4 – 8 Version 1.00

Chapter 4 • MSL Driver Procedures

Example

;**

;* DriverInitialize *

;**
;* *
;* Stack Parameters: *
;* *
;* Parm0 = ModuleHandle Parm5 = LoadableModuleFileHandle *
;* Parm1 = ScreenHandle Parm6 = ReadRoutine *
;* Parm2 = CommandLine Parm7 = CustomDataOffset *
;* Parm3 = (reserved) Parm8 = CustomDataSize *
;* Parm4 = (reserved) *
;* *
;**

Align 16
DriverInitialize proc

CPush
mov ebp, esp
pushfd
cli

;**
;* Allocate all resource tags used by MSL *
;**

push MSLSignature
push OFFSET RTagMessage_MSL
push [ebp + Parm0]
call AllocateResourceTag
add esp, 3 * 4
or eax, eax
mov MSLDriverResourceTag, eax
mov ebx, OFFSET ErrorGettingRTag_MSL
jz DisplayMessageExit

push IORegistrationSignature
push OFFSET RTagMessage_IORegistration
push [ebp + Parm0]
call AllocateResourceTag
add esp, 3 * 4
or eax, eax
mov DriverConfiguration.CIOResourceTag, eax
mov ebx, OFFSET ErrorGettingRTag_IORegistration
jz DisplayMessageExit

push InterruptSignature
push OFFSET RTagMessage_Interrupt
push [ebp + Parm0]
call AllocateResourceTag
add esp, 3 * 4
or eax, eax
mov InterruptResourceTag, eax
mov ebx, OFFSET ErrorGettingRTag_Interrupt
jz DisplayMessageExit

push TimerSignature
push OFFSET RTagMessage_Timer
push [ebp + Parm0]
call AllocateResourceTag
add esp, 3 * 4
or eax, eax
mov IntHoldOffEvent.TResourceTag, eax
mov ebx, OFFSET ErrorGettingRTag_Timer
jz DisplayMessageExit

Version 1.00 4 – 9

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

push AESProcessSignature
push OFFSET RTagMessage_AESProcess
push [ebp + Parm0]
call AllocateResourceTag
add esp, 3 * 4
or eax, eax
mov TimeOutEvent.AESRTag, eax
mov HoldOffEvent.AESRTag, eax
mov ebx, OFFSET ErrorGettingRTag_AESProcess
jz DisplayMessageExit

;**
;* Parse which port and interrupt to use *
;**

push [ebp + Parm1]
push [ebp + Parm2]
push NeedsIOPort0Bit OR NeedsInterrupt0Bit
push 0
push 0
push OFFSET AdapterOptions
push 0
push OFFSET DriverConfiguration
call ParseDriverParameters
add esp, 8 * 4
or eax, eax
mov ebx, OFFSET ErrorParsingIOMessage
jnz DisplayMessageExit

;**
;* Register Hardware Options *
;**

push 0
push OFFSET DriverConfiguration
call RegisterHardwareOptions
add esp, 2 * 4
or eax, eax
mov ebx, OFFSET ConflictingHardwareMessage
jnz DisplayMessageExit

;**
;* Set Interrupt Vector *
;**

push OFFSET ExtraEOIFlag
push CHAIN_SET_REAL_MODE
push 0
push InterruptResourceTag
push OFFSET DriverISR
movzx eax, BYTE PTR DriverConfiguration.CInterrupt0
push eax
call SetHardwareInterrupt
add esp, 6 * 4
or eax, eax
mov ebx, OFFSET ErrorGettingInterruptMessage
jnz DeRegisterHardware

;**
;* Initialize and Test the MSL Adapter *
;**

call HardwareInit ;returns ptr to error message
jnz DriverInitHardwareError
mov FirstTimeInit, 0 ;disable testing the adapter

;hardware again

4 – 10 Version 1.00

Chapter 4 • MSL Driver Procedures

;**
;* Register the MSL driver with the OS *
;**

push OFFSET DriverControl
push OFFSET DriverEmergencySend
push OFFSET DriverBuildSend
push OFFSET DriverSend
push OFFSET DriverConfiguration
push MSLDriverResourceTag
call RegisterServerCommDriver
add esp, 6 * 4
or eax, eax
mov ebx, OFFSET ErrorRegisteringMSLMessage
jnz ErrorRegisteringDriver

mov MaximumCommDriverDataLength, MAX_PACKET_SIZE
mov PacketSizeDriverCanNowHandle, MAX_PACKET_SIZE

;**
;* Start Timeout Callbacks *
;**

push OFFSET TimeOutEvent
call ScheduleNoSleepAESProcessEvent
add esp, 1 * 4

;**
;* DriverInitialize Successful Exit *
;**

popfd
xor eax, eax ; Return Success!
CPop
ret

;**
;* DriverInitialize Error Paths *
;**

ErrorRegisteringDriver:
DriverInitHardwareError:

;**
;* Unhook from Interrupt vector *
;**

push OFFSET DriverISR
movzx eax, BYTE PTR DriverConfiguration.CInterrupt0
push eax
call ClearHardwareInterrupt
add esp, 2 * 4

;**
;* Deregister hardware options from OS *
;**

DeRegisterHardware:

push OFFSET DriverConfiguration
call DeRegisterHardwareOptions
add esp, 1 * 4

Version 1.00 4 – 11

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

;**
;* Display Error Message in EBX *
;**

DisplayMessageExit:

push ebx ; Pointer to error string
push [ebp + Parm1] ; Screen Handle
call OutputToScreen ; Display Error Message
add esp, 2 * 4

popfd
or eax, -1 ; Return Failure
CPop
ret

DriverInitialize endp

;**

;* HardwareInit *

;**

HardwareInit proc

; (Adapter-specific code to bring up adapter to operational mode)

HardwareInitSuccess:

xor eax, eax
ret

HardwareInitError:

mov ebx, OFFSET HardwareInitErrorMessage
or eax, -1
ret

HardwareInit endp

4 – 12 Version 1.00

Chapter 4 • MSL Driver Procedures

DriverControl
[Non-Blocking]

Syntax long DriverControl (Parm0, Parm1 , , ,) ;

Parameters Parm0 = Function_Number

Specifies which control function is being requested.
0 = GetMSLConfiguration

1 = GetMSLStatistics

Parm1 = Buffer_Pointer

Pointer to the buffer to copy Configuration or Statistics.
If pointer=0, return size of Configuration or Statistics.

(All other parameters are function-dependent)

Return Value EAX contains a completion code.

EAX = 0 (Success)

EAX = Size

If Parm1 is zero, return the size of the structure or table.

EAX = 0FFFFFF81h (BAD_COMMAND)

Bad Function_Number was passed

Requirements Called at process level.

Description The MSL DriverControl interface routine is the entry point for all the
driver’s control subroutines. The driver must implement the
GetMSLConfiguration and GetMSLStatistics procedures, both detailed
in this section. These procedures provide statistical and configuration
information to the caller.

GetMSLConfiguration provides the original caller with a copy of the
MSL configuration structure in the buffer specified by Buffer_Pointer.
If the pointer is zero, just return the size of the configuration structure
in EAX.

GetMSLStatistics provides the original caller with a copy of the MSL
statistics table in the buffer specified by Buffer_Pointer. If the pointer
is zero, just return the size of the statistics table in EAX.

Version 1.00 4 – 13

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Example

Align 16

;**
;* Control Procedure Vector Information *
;**

ControlProcedures dd GetMSLConfiguration
dd GetMSLStatistics

ControlProceduresEnd equ $

MaxControlNumber equ ((ControlProceduresEnd-ControlProcedures)/4)-1

;***
;* DriverControl *
;***
;* *
;* Function 0 = GetMSLConfiguration *
;* Function 1 = GetMSLStatistics *
;* *
;* Stack Parameters: *
;* Parm0 = Function Number *
;* Parm1 = Pointer to the buffer to copy Configuration or Statistics. *
;* If pointer=0, return size of Configuration or Statistics. *
;* *
;***

Align 16
DriverControl proc

CPush ;save C registers
mov ebp, esp ;get stack base
pushfd ;save flag state
cli ;clear interrupts

mov ebx, [ebp + Parm0] ;get requested function #
cmp ebx, MaxControlNumber ;check if request is valid
ja InvalidControlProcedure ;jump if not

call ControlProcedures [ebx * 4] ;table thru routine

DriverControlExit:

popfd ;restore flags
CPop ;restore registers
ret

InvalidControlProcedure:

mov eax, BAD_COMMAND ;flag invalid status
jmp DriverControlExit

DriverControl endp

4 – 14 Version 1.00

Chapter 4 • MSL Driver Procedures

Example (continued)

;**
;* GetMSLConfiguration - Driver control procedure 0 *
;**

Align 16
GetMSLConfiguration proc

mov edi, [ebp + Parm1] ;get buffer pointer
or edi, edi ;get size only? (edi=0)
jz SHORT GetMSLConfigurationSize ;jump if so

mov ecx, DriverConfigurationSize ;copy the configuration
mov esi, OFFSET DriverConfiguration

rep movsb

xor eax, eax
ret

GetMSLConfigurationSize:

mov eax, DriverConfigurationSize ;get configuration size
ret

GetMSLConfiguration endp

;**
;* GetMSLStatistics - Driver control procedure 1 *
;**

Align 16
GetMSLStatistics proc

mov edi, [ebp + Parm1] ;get buffer pointer
or edi, edi ;get size only? (edi=0)
jz SHORT GetMSLStatisticsSize ;jump if so

mov ecx, DriverStatisticsSize ;copy the statistics
mov esi, OFFSET DriverStatistics

rep movsb

xor eax, eax
ret

GetMSLStatisticsSize:

mov eax, DriverStatisticsSize ;get statistics size
ret

GetMSLStatistics endp

Version 1.00 4 – 15

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

DriverSend
[Non-blocking]

On Entry The following registers contain the message header parameters to be
sent to the other server.

EAX Parameter
EBX Parameter

ECX Parameter (length of message data, may be zero)
EDX Parameter

ESI Parameter (address of message data)

EDI Parameter

On Return EAX must be set to zero if successful. A non-zero value indicates

failure and the driver must call ServerCommDriverError.

All registers may be modified upon return except segment registers,

the stack pointer, and EAX (which must have the completion code).

Requirements The OS will call this routine at either Interrupt or Process level.
Interrupts will be disabled and are required to remain disabled.

Description This procedure is called by the SFT III operating system to send a
single message to the other server. On entry to the DriverSend routine,
the registers EAX, EBX, ECX, EDX, ESI, and EDI contain the
parameter values for the message header to be sent to the other server.
These 6 registers will be used by the receive routine in the other server
when calling ReceiveServerCommPointer.

The driver must copy the message header and message data (if any) to
the adapter and initiate the packet’s transmission. ECX is the length
of the message data in bytes and ESI contains the address of the data
(if the length is non-zero).

The driver completely controls the server’s ability to call the DriverSend

and DriverBuildSend procedures by controlling the value of the global
variable PacketSizeDriverCanNowHandle as follows:

negative = DriverSend cannot be called by the OS
zero = DriverSend can send a message header only (no data)

> zero = DriverSend can send a message header plus data up
to the number of bytes indicated by
PacketSizeDriverCanNowHandle.

The OS may call DriverSend any time the value in PacketSizeDriver-

CanNowHandle will accommodate a message the OS has queued to
send. The operating system will attempt to send more than one
message without waiting for an acknowledgment unless prevented by

4 – 16 Version 1.00

Chapter 4 • MSL Driver Procedures

the driver. The driver prevents this by placing a negative value in
PacketSizeDriverCanNowHandle.

Note: The driver should not attempt to use the send procedure’s execution
time to receive a packet. It should simply validate the packet, place the
packet data into its transmit buffer, initiate the transmission sequence,
and return.

Example

;**

;* DriverSend *

;**
;* *
;* On Entry: On Exit: *
;* *
;* EAX = OS parameter EAX = Not saved *
;* EBX = OS parameter EBX = Not saved *
;* ECX = OS parameter/Length of Message Data ECX = Not saved *
;* EDX = OS parameter EDX = Not saved *
;* EBP = Not Defined EBP = Not saved *
;* ESI = OS parameter/Pointer to Message Data ESI = Not saved *
;* EDI = OS parameter EDI = Not saved *
;* *
;* Interrupts Disabled *
;* *
;**

Align 16
DriverSend proc

mov PacketSizeDriverCanNowHandle, -1 ;inform OS we’re busy
mov TxPacketMessageCount, 1 ;sending one message
inc TransmitMsgCount ;update statistics counter

;**
;* Build Message Packet in Transmit Buffer *
;**

; Note: this code assumes the hardware can accept loading of message data
; even if the channel is busy with another transmit

(Setup packet header and message header in transmit buffer here)

or ecx, ecx ;any data with message?
jz DriverSendReady ;skip data copy if not

(Copy message data to transmit buffer here: ecx=size esi=addr)

DriverSendReady:

call TransmitMessagePacket
inc TransmitPacketCount
xor eax, eax
ret

DriverSend endp

Version 1.00 4 – 17

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Example (continued)

;**

;* TransmitMessagePacket *

;**

Align 16
TransmitMessagePacket proc

cmp TransmitInProgress, TRUE ;if a transmit is in progress...
je PutMessageTransmitOnHold ;...jump (can’t send msg now)

(Initiate the transmit of the loaded message packet here)

;**
;* Begin watching for Adapter Timeout Errors *
;**

mov TransmitInProgress, TRUE
mov TimeOutEvent.AdapterTimeOutTime, ADAPTER_TIMEOUT_COUNT

;**
;* Begin watching for Message Timeout Errors *
;**

mov MessageInProgress, TRUE
mov eax, ServerCommACKTimeOut
mov TimeoutEvent.MessageTimeoutTime, ax

mov MessageTransmitPending, FALSE
ret

PutMessageTransmitOnHold:

mov MessageTransmitPending, TRUE
ret

TransmitMessagePacket endp

DriverSend Summary

Transmit a single message

1 Stop OS from sending anything
(PacketSizeDriverCanNowHandle = -1)
(Not mandatory if dual port transmit buffer)

2 TxPacketMessageCount ← 1
3 Increment statistics counter (TransmitMsgCount)
4 Build media-required header in transmit buffer
5 Build message header (6 registers, 24 bytes)
6 Check ECX for data to copy?

-yes: copy data to adapter
-no: skip

7 Check if channel is available
-yes: transmit packet
-no: set MessageTransmitPending flag and exit

8 Start transmit timeout sequence as soon as transmit is sent
9 Return status to OS

4 – 18 Version 1.00

Chapter 4 • MSL Driver Procedures

DriverBuildSend
[Non-blocking]

On Entry The following registers contain the message header parameters to be
sent to the other server.

EAX Parameter
EBX Parameter

ECX Parameter (length of message data, may be zero)
EDX Parameter

ESI Parameter (address of message data)

EDI Parameter

On Return EAX must be set to zero if successful. A non-zero value indicates

failure and the driver must call ServerCommDriverError.

All registers may be modified upon return except segment registers,

the stack pointer, and EAX (which must have the completion code).

Requirements This procedure is called at interrupt level. Interrupts will be disabled
and are required to remain disabled. The driver must not use this
procedure’s execution time to receive a packet.

Description The DriverBuildSend procedure is used to build multi-message packets.
The operating system queues messages when the driver is busy
transmitting another message. After the DriverISR receives a message
acknowledgement and notifies the OS (by calling SendServerComm-

CompletedPointer), it must obtain any queued messages by calling
GetNextPacketPointer.

If there are messages queued, calling this procedure initiates a possible
multimessage building sequence. During GetNextPacket the Driver-

BuildSend procedure is called repeatedly to build the multimessage
packet. GetNextPacket will stop calling the DriverBuildSend routine
only when the driver indicates, through the value in PacketSizeDriver-

CanNowHandle, that it has no more room for additional messages or
when the OS has no more messages to send.

The DriverBuildSend procedure must copy the message header and
message data (if any) to the transmit buffer. On entry, the registers
EAX, EBX, ECX, EDX, ESI, and EDI contain the parameter values for
the message header. The message data length (in bytes, not including
the header) is in ECX, and the message data address (assuming ECX
is not zero) is in ESI. DriverBuildSend must then update the Packet-
SizeDriverCanNowHandle variable and return.

Version 1.00 4 – 19

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

MSL drivers should place a limit on the maximum number of messages
transmitted in a multi-message packet. Because the driver operates
with interrupts disabled during this procedure, as well as during
message processing, allowing an unlimited number of messages may
prevent other critical processes from executing in a timely manner.
This can cause significant degradation in operating system performance
and may result in mirrored server failures.

Note: As a starting point, we recommend using a maximum of 128 messages

per packet and optimizing for the particular MSL design. The optimum
value will vary from driver to driver.

The DriverBuildSend procedure and its interaction with the DriverISR

and GetNextPacket code is illustrated in the flow diagram below.

Set up for
multi-message

packet
transmission

Call OS via
GetNextPacketPtr

Set registers to OS
message header

parameters

Call
DriverBuildSend

Copy message header
and message data

to packet

Adjust
PacketSizeDriver-
CanNowHandle

variable
?

Does next
message fit?

Yes

No

Transmit loaded
multi-message

packet

?

Does OS have any
messages queued?

(check value of
PacketSizeNowAvailable)

No

Yes

DriverISR DriverBuildSend GetNextPacket

(after notifying OS of an
Acknowledgement)

4 – 20 Version 1.00

Chapter 4 • MSL Driver Procedures

Example

;**

;* DriverBuildSend *

;**
;* *
;* On Entry: On Exit: *
;* *
;* EAX = OS parameter EAX = Not saved *
;* EBX = OS parameter EBX = Not saved *
;* ECX = OS parameter/Length of Message Data ECX = Not saved *
;* EDX = OS parameter EDX = Not saved *
;* EBP = Not Defined EBP = Not saved *
;* ESI = OS parameter/Pointer to Message Data ESI = Not saved *
;* EDI = OS parameter EDI = Not saved *
;* *
;* Interrupts Disabled *
;* *
;**

Align 16
DriverBuildSend proc

(Build Message Header)

or ecx, ecx ;any data with message
jz DriverBuildSendDone ;skip data copy if not

(Copy Message Data to adapter: ecx=size esi=addr)

DriverBuildSendDone:

inc TransmitMsgCount ;update statistics counter
inc TxPacketMessageCount ;updata message count

cmp TxPacketMessageCount, MAX_MESSAGE_COUNT ;max # of messages yet?
je HitMaxMessageCount ;jump if so

sub PacketSizeDriverCanNowHandle, MESSAGE_HEADER_SIZE
sub PacketSizeDriverCanNowHandle, ecx

xor eax, eax ;indicate success
ret ;return to OS

HitMaxMessageCount:

mov PacketSizeDriverCanNowHandle, -1 ;indicate no more msgs
;in this packet

xor eax, eax
ret ;return to OS

DriverBuildSend endp

Version 1.00 4 – 21

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

DriverEmergencySend
[Non-blocking]

Parameters None

Return Values None (This procedure must return; it will be returning to Abend)

Requirements This procedure can be called at either Process or Interrupt level.
Interrupts are disabled on entry and must remain disabled.

Description The DriverEmergencySend procedure is called by the SFT III operating
system to notify the other server that this server is no longer
operational. It may be called at ANY time.

The DriverEmergencySend procedure should make its best attempt to
send an emergency packet or signal informing the other server of the
emergency. If necessary, the driver may loop with interrupts disabled
waiting for an operation such as a transmit to complete in order to
implement this function. However, care must be taken to avoid an
endless loop. The driver can also abort a function to send the
emergency signal.

Important ! If the driver is unable to successfully send the emergency packet, it
must still return to the caller. Avoid performing any operations that
could cause a machine lockup or prevent the return to the caller.

Some drivers may not be able to implement this feature, but it is
essential to accelerating the fault tolerance handling and recovery of
SFT III.

Receiving an Emergency Notification

When an MSL driver receives an emergency notification packet, it
notifies the OS of the emergency by calling the ServerCommDriverError

routine (described in Chapter 5).

If the driver is in a message holdoff state when an emergency

notification packet is received, ServerCommDriverError must not be
called until all heldoff messages that have already been acknowledged
are delivered to the operating system. Otherwise, there is a potential
for divergence of the two servers’ states, which would destroy the
mirror.

4 – 22 Version 1.00

Chapter 4 • MSL Driver Procedures

Example

;**

;* DriverEmergencySend *

;**

Align 16
DriverEmergencySend proc

cmp TransmitInProgress, FALSE ;if not transmitting now
je EmergencySendReady ;fire Emergency packet

mov ecx, MAX_EMERGENCY_WAIT ;set adapter specific wait
;(this is the maximum loop time
; required to complete a transmit)

EmergencySendWaitLoop:

in al, 61h ;else waste time
in al, 61h ;(same for all speed machines)

(Read Adapter Status)
(If transmit channel is now available....jmp EmergencySendReady)

loop EmergencySendWaitLoop

ForceEmergencySend:

(If possible, cancel the adapter’s current transmission and force send)

EmergencySendReady:

(Transmit the Emergency Notification)

ret

DriverEmergencySend endp

Version 1.00 4 – 23

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

DriverEmergencySend Summary

The goal of the Emergency Notification is to notify the other server of
this servers failure as soon as possible. If needed, the driver may delay,
but it should make a best attempt to send the emergency packet.
However, interrupts must remain disabled and the driver must not wait
indefinitely.

1 If the transmit channel is available:

Send the Emergency Notification packet, then exit.

2 If the transmit channel is not available:

Delay up to the maximum wait time for the channel to be made
available (don’t wait forever).

If the channel is still not available, either try to force a send or
exit. (Do not force the send if doing so could cause the machine
or the bus to hang.)

4 – 24 Version 1.00

Chapter 4 • MSL Driver Procedures

DriverISR

The driver’s Interrupt Service Routine, DriverISR, is called by the
system ISR (which actually receives the interrupt) for all hardware
interrupts. An interrupt may indicate one of the following events:

• Message packet received
• Acknowledgment received
• Holdoff notification received
• Emergency notification received
• Reception error encountered
• Transmission complete
• Transmission error encountered

Each of these cases is detailed on the following pages. (Some adapters
may not generate an interrupt for each of the above events.) An
example of an MSL driver’s interrupt service routine can be found in
the MSL driver listing in Appendix E.

The driver ISR must perform the following tasks:

• Clear the interrupt on the adapter
• Issue End of Interrupt commands (EOIs)
• Perform all functions to service the interrupt, such as:

- Process messages
- Cancel/start timer events
- Retry unsuccessful operations
- Post completion status
- Check for additional operations to initiate

• Return (do not iret) to the caller (the system ISR)

All of the driver ISR code must run with interrupts disabled due to its
function within the driver and SFT III OS architecture. Under no

circumstances is a driver ISR allowed to make any calls to Blocking
routines.

Version 1.00 4 – 25

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Receiving a Message Packet

Upon successful reception of a message, the MSL driver should perform
the following functions:

1 Verify message packet reception
(Is it a valid message, no receive errors)

2 Send a message acknowledgment
3 Call ReceiveServerCommPointer with the message header
4 Examine the completion code returned to determine what action

to take with the message.

ReceiveServerCommPointer is a global variable that contains a pointer
to the operating system’s current receive handler. The MSL driver
should load EAX, EBX, ECX, EDX, EDI, and ESI with the six values
passed as the message header from the other server and notify the OS
of the message by calling the ReceiveServerCommPointer routine. This
routine must be called for each message received from the other server.
This call returns with one of five possible completion codes (CCode),
listed below.

Note: The OS may modify the ECX and ESI registers (effectively
bypassing or ignoring the data). The modified ECX and ESI registers
must be used to copy the message if required. Since ECX may have
changed, the adapter still needs to use the original length to find the
end of this message or the beginning of the next message.

CCode = 0 (OK)

The driver should copy ECX bytes of the message data from the
adapter to the destination in system RAM specified by ESI.

Note: ECX and ESI may have been modified by the routine. The
new values returned by this routine must be used for the data move.

CCode = 1 (OK with Callback)

The driver should copy ECX bytes of the message data from the
adapter to the destination in system RAM specified by ESI.

Note: ECX and ESI may have been modified by this routine. The
values returned from this routine must be used for the data move.

After copying the data, the driver should make a callback to the
Receive handler. This is done by calling the address specified by
EDX. Prior to making the callback, the registers must be restored
to the original message header values with the exception of ECX
and ESI (use the new possibly modified values).

4 – 26 Version 1.00

Chapter 4 • MSL Driver Procedures

CCode = 2 (Holdoff)

Signals the driver to place the message on hold for redelivery at a
later time. The driver may either send a request asking the other
server to resend the packet or save the packet and attempt to
deliver the message at a later time. This completion code is used by
the operating system to throttle the incoming packets.

Note: The operating system needs to run before it will be able to
accept this packet. An immediate attempt to redeliver this packet
without relinquishing control will be fruitless. Redelivery can be
accomplished by setting up an AES and interrupt time callback
event that relinquishes control, then triggers an attempt to redeliver
the packet.

Care must be exercised to ensure that the packet is not delivered to
the OS twice.

CCode = 3 (Holdoff)

Same as CCode 2 above.

CCode = 4 (Ignore)

The driver should ignore this message.

Once the driver has successfully delivered the packet data to the OS,
it should send an acknowledgment to the sender. (The driver may send
the acknowledgment before copying the data, but must then be able to
receive an ensuing packet from the other server.)

Note: The OS may call the DriverSend procedure while executing the
ReceiveServerCommPointer procedure (unless the driver has set
PacketSizeDriverCanNowHandle to a negative value). The driver must
be able to send a packet at this point. To prevent a possible “deadlock”
situation, if DriverSend is called from within ReceiveServer-

CommPointer and the receiving driver cannot receive system commands
like the ACK while a message is being held off, it must guarantee the
delivery of the ACK before the packet, just in case the packet does get
held off. (A “deadlock” case is where both servers are waiting on
something from the other server that cannot be delivered because of the
Holdoff state.)

Important: A return code of 2 or 3 requires the MSL driver to enter a receive hold
state. The receive hold state requires the MSL driver to handle errors
differently. Normally when the MSL driver is NOT in the receive hold
state, it calls the OS immediately (via ServerCommDriverError) upon
detection of any errors. However, when the MSL driver is in a receive
hold state, it must not call the OS with notification of an error. The
driver must instead note the error, finish delivering all received
messages to the OS, and only then notify the OS of the detected error.
The driver must notify the OS of detected errors in this manner to
preserve the mirrored state of the servers.

Version 1.00 4 – 27

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Receiving an Acknowledgement

When an acknowledgement is received for a message previously sent to
the other server, the MSL driver should notify the operating system by
making a call via the ServerCommCompletedPointer. The number of
messages being acknowledged must be passed in EBP to the OS
procedure ServerCommCompletedPointer.

Note: The call via the ServerCommCompletedPointer allows the
operating system to move ahead to the next event or state. Because the
acknowledgment permits the operating system to move ahead, it is

critical that the receiver only send an acknowledgment when it has
successfully received the packet. Otherwise, the servers may get out of
sync causing potential data loss in the event of a system failure.

After the MSL driver has notified the OS of an acknowledgment, it
must check for additional messages the OS may have queued for
transmission. The OS indicates the size of the next message (excluding
headers) to send using the PacketSizeNowAvailable variable. If no
messages are queued for transmission, this value is negative. (A value
of zero indicates a message header only with no message data.) The
size of the message will always be less than or equal to the maximum
data size the MSL driver is capable of sending.

The MSL driver must transmit additional messages the OS may have
queued up and waiting. The process of obtaining and sending queued
messages is covered in the DriverBuildSend routine description.

4 – 28 Version 1.00

Chapter 4 • MSL Driver Procedures

Receiving an Emergency Notification

An emergency packet (or signal) is used to tell the operating system
that the other server has failed. If an emergency packet is received, the
driver should perform the following functions:

1 Increment Diagnostic Counter: The driver should maintain a count
of the number of emergency packets (signals) it has received

2 Check if the driver is in a message holdoff state. If an emergency

packet is received while the driver is in a holdoff state, the OS must
not be called until the holdoff condition is over. This applies only
if the ACK for the held off message has already been sent.
(Otherwise there is a potential for the two servers’ states to diverge,
and the mirror would be lost.)

Note: If the held off message is part of a multi-message packet, the
remaining messages in the packet must also be delivered before the
OS is notified of the emergency.

3 Call ServerCommDriverError

Although the other server is non-functional, this server is still
operational. Therefore, the driver should still continue to function as
normal. In other words, after making the call to ServerComm-

DriverError, the driver should continue to send and receive packets as
if nothing had happened.

Version 1.00 4 – 29

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Handling Receive Errors

If a receive error is encountered, the MSL driver should perform the
following actions:

1 Increment Diagnostic Counters: The driver should maintain
diagnostic counters for every detectable error condition on the
adapter. Although some adapters provide greater diagnostic support
than others, the driver should attempt to pinpoint the specific cause
of the error.

2 Attempt to Recover: An attempt to recover from a Receive error
(such as requesting the sender to retransmit the packet or resetting
the adapter), should be careful not to interfere with the normal
operation of the adapter. For example, the error handler should not
interfere with a transmit that may be in progress.

Care must be taken to ensure that recovery attempts do NOT cause

the same packet to be delivered multiple times.

3 Signal an Unrecoverable Error: If the driver detects a failure that
causes communication to cease, it should notify the operating
system by making a call to ServerCommDriverError.

The receive routine is responsible for validating each message received,
and for delivering the message data to the operating system. As with
any communications driver, the integrity of the data is of utmost
importance. The MSL communications adapter and associated MSL
driver must ensure the validity of the data delivered to the operating
system. This may include attempts to correct or retransmit packets.

The driver must ensure that attempts at recovery do not compromise the

integrity of the system. If a retry attempt could result in even a small
possibility that erroneous messages could be delivered to the operating
system (this may cause an abend on the secondary server), the driver
should report that the link is no longer valid rather than retry the
operation.

4 – 30 Version 1.00

Chapter 4 • MSL Driver Procedures

Transmit Complete

Each time a packet is successfully transmitted by the adapter, the
driver should increment the TransmitPacketCount statistics counter and
cancel any adapter watchdog timers.

If a transmission error is encountered perform the steps outlined below.

Transmit Errors

Note: If the MSL driver is in a message holdoff state, do not notify the
OS of the transmit error until no longer in the holdoff state.

If a transmit error is encountered, the MSL driver should perform the
following actions:

1 Increment Diagnostic Counters: The driver should maintain
diagnostic counters for every detectable error condition on the
adapter. Although some adapters provide greater diagnostic support
than others, the driver should attempt to pinpoint the specific cause
of the error.

2 Attempt to Recover: An attempt to recover from a Transmit error
(such as attempting to retransmit the packet or resetting the
adapter) should be careful not to interfere with the normal
operation of the adapter. For example, the Transmit error handler
should not interfere with a packet reception that may be in
progress.

3 Signal an Unrecoverable Error: If the driver detects a failure that
causes communication to cease, it should notify the operating
system by making a call to ServerCommDriverError with an error
code of zero, signaling a hardware failure.

The driver is responsible for delivering each message intact and in
order to the other server. The integrity of the data propagated by the
MSL driver is of utmost importance. The communications adapter
hardware and associated driver must ensure the correctness of the data
delivered to the other server. This may include attempts to retransmit
messages; however, the driver must guarantee that attempts at
recovery do not compromise the integrity of the system.

Version 1.00 4 – 31

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

DriverHoldOff / DriverIntHoldOff

This section describes the MSL’s Holdoff handling procedures used to
redeliver messages to the OS.

The operating system will sometimes indicate to the MSL driver that
it wants a message “held off” and redelivered at a later time. The OS
passes this holdoff indicator to the MSL driver via a ReceiveServer-
CommPointer completion code of 2 or 3.

The MSL driver, upon receiving the Holdoff indicator, must set up a
redelivery system. This may necessitate sending a HoldOff Notification

to the other server to prevent an inadvertent time-out due to the
holdoff. (The DriverTimeout Routine is described in the next section.)

It is important to allow the server to execute briefly before trying to
redeliver a message which has been given a holdoff status, so that the
server can process and clear the cause for the holdoff. However, it is
also very important to present the message to the server very soon after
giving it time to process, so that the server throughput does not suffer
appreciably.

In order to meet both requirements, the MSL driver should implement
a dual callback mechanism to redeliver a message: One mechanism to
redeliver as soon as possible, and another to guarantee redelivery of a
message in a fixed amount of time. The guaranteed delivery
mechanism is needed to prevent inadvertent timeouts.

An AESSleep timer should be used for the quick-retry requirement,
because it will typically occur more quickly and frequently than any
other callback mechanism offered by the OS.

An interrupt time (timer) callback should be used to guarantee that,
even if the OS is very busy, a redelivery attempt will be made every
timer tick. The interrupt time callback is also necessary to ensure that
a holdoff notification can be sent to the other server, so that it does not
timeout waiting for the acknowledgment (if, for example, a process does
not relinquish control for several ticks).

Sample Holdoff routines are shown on the following pages. The
HoldOffDeliverMessageToOS procedure called in this example (which
performs the actual message redelivery), as well as the ISR routine
(which scheduled the holdoff callbacks), are listed in the sample MSL
Driver template in Appendix E.

4 – 32 Version 1.00

Chapter 4 • MSL Driver Procedures

Example

;**

;* DriverHoldOff *

;**

Align 16
DriverHoldOff proc near

CPush
cli

cmp HoldStateFlag, 0
je DriverHoldOffExit

mov BackOffAmount, 0

AttemptToRedeliverMessage:

call HoldOffDeliverMessageToOS
cmp HoldStateFlag, 0
je CancelDriverIntHoldOff

inc BackOffAmount
mov eax, BackOffAmount
mov HoldOffWaitLoopCount, eax

HoldOffWaitLoop:

call CRescheduleLast
cmp HoldStateFlag, 0
je DriverHoldOffExit

dec HoldOffWaitLoopCount
jnz HoldOffWaitLoop
jmp AttemptToRedeliverMessage

CancelDriverIntHoldOff:

mov edx, OFFSET IntHoldOffEvent
call CancelInterruptTimeCallBack

DriverHoldOffExit:

CPop
ret

DriverHoldOff endp

Version 1.00 4 – 33

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Example

;**

;* DriverIntHoldOff *

;**

Align 16
DriverIntHoldOff proc near

cmp HoldStateFlag, 0 ;message still on hold?
je DriverIntHoldOffExit ;if not, DriverHoldOff got

; it delivered already

call HoldOffDeliverMessageToOS ;else redeliver message now

cmp HoldStateFlag, 0 ;message still on hold?
je DriverIntHoldOffExit ;if not, we got it delivered

mov edx, OFFSET IntHoldOffEvent ;otherwise, reschedule callback
call ScheduleInterruptTimeCallBack ; to this routine

DriverIntHoldOffExit:

ret ;exit if done

DriverIntHoldOff endp

4 – 34 Version 1.00

Chapter 4 • MSL Driver Procedures

DriverTimeout

The DriverTimeOut routine is a callback routine used by the MSL
driver for monitoring all packet transmissions. If the other server has
not acknowledged the reception of the last message packet in a timely
manner, the MSL should notify the OS by calling the ServerComm-

DriverError. If the MSL driver is in a message holdoff state, it should
not take any action until it is out of the holdoff state.

The driver must not inadvertently time out messages which have been
given a holdoff status: If holdoff could prevent acknowledgments to
outstanding sends, care should be taken to avoid inadvertently timing
out on the sends for that reason (the Holdoff state blocking the ACKs).

If the MSL driver is not in a message holdoff state, it may notify the OS
of the break in the communication link by passing an error code to the
OS procedure ServerCommDriverError.

The error code TIME_OUT_ERROR is used for message timeout errors
and HARDWARE_ERROR for adapter timeout errors.

If a timeout error occurs, the driver should clear all receive variables,
transmit variables, and system indicator variables, bringing the MSL
driver into a state where it can initiate a new communication link.
(Note: Do not clear the statistics counters.)

Version 1.00 4 – 35

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Example

;**

;* DriverTimeOut *

;**
;* *
;* This routine will be executed every tick. If on entry both the *
;* AdapterTimeOutTime and MessageTimeOutTime counters are zero, the *
;* adapter is idle. This routine handles timeout events if the adapter *
;* did not complete the transmit or if an acknowledgement is not received. *
;* *
;* Assumes: Interrupts are enabled *
;* *
;**

Align 16
DriverTimeOut proc

CPush
cli

CheckIfAdapterTimedOut:

cmp TimeOutEvent.AdapterTimeOutTime, 0
je CheckIfMessageTimedOut

dec TimeOutEvent.AdapterTimeOutTime
jnz CheckIfMessageTimedOut

;*** Adapter Timed Out ***

inc AdapterTimedOutCount ;custom statistics counter
mov TransmitInProgress, FALSE
mov TimeOutEvent.AdapterTimeOutTime, 0

mov eax, HARDWARE_ERROR
cmp HoldStateFlag, 0
je NotifyError

mov HardwareErrorPending, TRUE
jmp DriverTimeOutExit

CheckIfMessageTimedOut:

cmp TimeOutEvent.MessageTimeOutTime, 0
je DriverTimeOutExit

dec TimeOutEvent.MessageTimeOutTime
jnz DriverTimeOutExit

;*** Message Timed Out ***

inc MessageTimedOutCount ;custom statistics counter
mov MessageInProgress, FALSE
mov TimeOutEvent.MessageTimeOutTime, 0

mov eax, TIME_OUT_ERROR
cmp HoldStateFlag, 0
je NotifyError

mov TimeOutErrorPending, TRUE
jmp DriverTimeOutExit

4 – 36 Version 1.00

Chapter 4 • MSL Driver Procedures

Example (continued)

NotifyError:

push eax
call ServerCommDriverError ;call OS
add esp , 1 * 4 ;clean up stack
inc ServerCommErrorCount

DriverTimeOutExit:

push OFFSET TimeOutEvent
call ScheduleNoSleepAESProcessEvent
add esp, 1 * 4

CPop
ret

DriverTimeOut endp

Version 1.00 4 – 37

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

DriverRemove

NetWare calls the DriverRemove routine only once. This procedure
returns all resources the driver has allocated from the server, after
which it returns to the caller. The driver code is removed from server
memory upon return.

NetWare requires the DriverRemove procedure to remove all related
structures and finally the driver’s code image from file server memory.
The procedure is called by the console command unload. Please note
that all structures for multiple adapter cards are unloaded by a single
call to DriverRemove.

The DriverRemove procedure must perform the following steps:

1 Disable interrupts.

2 Disable the adapter.

3 If the driver is in HoldOff state, it must continue to redeliver
acknowledged messages until HoldOff is finished.

4 Cancel any active callback events. The driver must deactivate any
callback event timers by calling CancelNoSleepAESProcessEvent,
CancelSleepAESProcessEvent, or CancelInterruptTimeCallBack
depending on the timer type.

5 Deregister from the Mirrored Server Link (MSL) interface, by
calling DeRegisterServerCommDriver.

6 Restore interrupts allocated by the driver by calling
ClearHardwareInterrupt.

7 Release hardware resources by calling DeRegisterHardwareOptions.

8 Deallocate any memory allocated for the driver by calling
FreeSemiPermMemory (for each block of memory obtained
previously from the AllocSemiPermMemory routine).

9 Return.

4 – 38 Version 1.00

Chapter 4 • MSL Driver Procedures

Example

;**

;* DriverRemove *

;**

Align 16
DriverRemove proc

CPush
pushfd
cli

;**
;* Unhook from Interrupt vector *
;**

push OFFSET DriverISR
movzx eax, BYTE PTR DriverConfiguration.CInterrupt0
push eax
call ClearHardwareInterrupt
add esp, 2 * 4

;**
;* See if we are currently in a Holdoff state *
;**

cmp HoldStateFlag, 0
je CancelCallBackEvents

;**
;* Wait until the holdoff state is finished to cancel *
;**

TryAgain:

call CRescheduleLast
cmp HoldStateFlag, 0
jne TryAgain

CancelCallBackEvents:

mov edx, OFFSET IntHoldOffEvent
call CancelInterruptTimeCallBack

push OFFSET HoldOffEvent
call CancelSleepAESProcessEvent
add esp, 1*4

push OFFSET TimeOutEvent
call CancelNoSleepAESProcessEvent
add esp, 1*4

;**
;* Deregister driver from OS *
;**

push MSLDriverResourceTag ;pass Resource tag
call DeRegisterServerCommDriver ;remove the driver.
add esp, 1*4

Version 1.00 4 – 39

Developer’s Guide for NetWare SFT III Mirrored Server Link Drivers

Example (continued)

;**
;* Deregister hardware options from OS *
;**

push OFFSET DriverConfiguration
call DeRegisterHardwareOptions
add esp, 1*4

popfd
CPop
ret

DriverRemove endp

4 – 40 Version 1.00

