MSL Driver Procedures

DriverInitialize 4-1
Allocate Resource Tags 4-2
Determine Hardware Options 4-2
Register Hardware Options 4-2
Set Hardware Interrupts 4-3
Initialize the Host Adapters 4-3
Verify Host Adapter Operability 4-3
Load Coprocessor Firmware 4-4
Register the Driver 4-5
Schedule Callbacks 4-5
Return Initialization Status 4-5
Error Reporting and Recovery 4-6

DriverControl e 4-13

DriverSend e 4-16

DriverBuildSend 4-19

DriverEmergencySend 4-22

DriverISR e 4-25

Receiving a Message Packet 4-26
Receiving an Acknowledgement 4-28
Receiving an Emergency Notification 4-29
Handling Receive Errors 4-30
Transmit Complete 4-31
Transmit Errors 4-31

DriverHoldOff 4-32

DriverIntHoldOff 4-32

DriverTimeout i 4-35

DriverRemove 4-38

Chapter 4 +« MSL Driver Procedures

Driverinitialize

The MSL driver must provide an initialization procedure that performs
the tasks involved in hardware registration, initialization, and testing.
The operating system calls the DriverInitialize routine each time a load
command is issued for the driver.

Drivers are typically written so that a load command must be issued for
each host adapter. In a future release of NetWare SFT III, loading
multiple MSL adapters will be supported. (See the Dual Mirrored
Server Links description in Chapter 1.) Drivers should also allow the
operator to load the driver with a single specified adapter, to selectively
enable only the desired host adapters.

DriverInitialize must determine and reserve hardware configuration
options. It also exchanges any required information with NetWare and
brings the adapter up to operational mode. If DriverInitialize fails to
initialize the adapter, it returns an error status to the operating system
and the driver’s code is unloaded.

The DriverlInitialize procedure performs the following tasks:

Allocate resource tags
Determine the hardware configuration
Register the hardware configuration options
Set hardware interrupts
Initialize and test adapter hardware
Register the driver with the OS
Schedule callback events for error detection and recovery
Report and recover from any initialization errors
If initialization fails:
-Release hardware options
-Release interrupts
-Cancel scheduled callback events
-Return allocated memory
* Return initialization status to the caller (OS)

The remainder of this section describes the Driverlnitialize tasks in
detail. An example of an MSL driver’s initialization procedure can be
found in the MSL driver listing in Appendix E.

Version 1.00 41

Developer’s Guide for NetWare SFT Ill Mirrored Server Link Drivers

Allocate Resource Tags

Resource tags are used by the operating system to identify and control
various hardware and system resources. Drivers are required to
allocate several types of resource tags before making certain system
calls. The resource tags are then validated by the OS when the calls
are made and are used to track the requested resource. If a module
fails to free up allocated resources prior to termination then the OS can
perform the cleanup operations so the resources are not lost to the
system.

Normally the driver acquires all needed resource tags before performing
any other driver initialization functions. The resource tags are not
deallocated by the driver or returned to the operating system, since the
OS routines accomplish this automatically upon module termination.
(See the AllocateResourceTag description in Chapter 5 for details.)

Determine Hardware Options

The driver must determine the hardware configuration information
needed for the IOConfigurationStructure. This includes options such as
the slot number for MCA or EISA adapters, the base port for
programmed IO adapters, memory decode addresses for shared RAM
adapters, interrupt numbers, and DMA channels. In MCA or EISA
machines, the driver can obtain this information directly from the
system once the slot number has been identified as described in
Appendix C.

The driver uses the ParseDriverParameters procedure to obtain and
validate hardware configuration options entered on the load command
line and to query the operator for any required parameters which were
not specified. The ParseDriverParameters procedure requires an
AdapterOptionStructure containing the valid options for the hardware
configuration. A NeedsBitMap is also required to indicate which
specific hardware options must be obtained either from the command
line or from the console operator. The selected values are used to fill
in the adapter’s IOConfigurationStructure. (See the ParseDriver-
Parameters description in Chapter 5 for details.)

Register Hardware Options

When all needed information has been determined for the driver’s
IOConfigurationStructure, the DriverInitialize routine must register the
hardware options with the operating system. The OS is informed of the
configuration using the RegisterHardwareOptions procedure. This
routine reserves the hardware configuration for the adapter and will
notify the driver of any conflicts with existing hardware in the system.

Version 1.00

Chapter 4 +« MSL Driver Procedures

Set Hardware Interrupts

Driver initialization routines must allocate requested interrupts by
calling SetHardwarelnterrupt.

Interrupts can be shareable or non-shareable. The driver indicates that
it can share the interrupt by setting the appropriate bit in the CFlags
field of the IOConfigurationStructure and by setting the ShareFlag
parameter passed to the SetHardwarelnterrupt routine. If operating in
shared mode, the driver’s ISR must provide logic for handling shared
interrupts. It must determine if an interrupt is for an adapter
associated with the driver and return this indication back to the OS.

For further information see the SetHardwarelnterrupt description in
Chapter 5 and the DriverISR section later in this chapter.

Initialize the Host Adapters

The driver can only initialize the host adapter and register it with the
OS after the necessary hardware options have been validated and
reserved. The driver must not issue instructions to I/O ports, access
shared RAM, etc..., until hardware registration is completed, unless
they are standard MCA or EISA system ports used to determine the
slot configuration.

The procedure for initializing an adapter depends entirely on the
requirements for the particular hardware design. NetWare places no
specific requirements on adapter initialization, except that when
Driverlnitialize returns, the host adapter should be fully initialized and
ready for operation. It may even require procedures such as loading
host adapter firmware.

Verify Host Adapter Operability

The driver should test the host adapter during initialization to ensure
that it is operational. If the host adapter exhibits a problem or in any
way fails testing, it should not be registered with the OS. A brief
message describing the problem should be displayed for the operator’s
benefit and the driver should proceed with the error recovery steps
outlined later in this chapter.

Version 1.00

Developer’s Guide for NetWare SFT Ill Mirrored Server Link Drivers

Load Coprocessor Firmware

NetWare custom data can be anything that might be required by a
driver. For example, the driver may need to read in firmware to be
loaded into a co-processor board. To define the custom data file, use the
CUSTOM keyword in the driver’s linker definition file followed by the
filename (custom data files are simply appended to the driver module).
NetWare passes the custom data file’s handle, starting offset, size, and
the ReadRoutine address to the initialization procedure, where it must
be saved upon entry if custom data is going to be read by the driver.
The initialization procedure can read the file into memory by calling the
ReadRoutine using the syntax shown below:

ReadRoutine (
LONG CustomDataFileHandle,
LONG *CustomDataOffset,
LONG *CustomDataDestination,
LONG CustomDataSize);

The driver must supply the destination in memory according to the
needs of the host adapter. Some adapters only support word or
doubleword moves to or from shared RAM, and will not support moves
with other widths or alignments.

The ReadRoutine does byte moves to the supplied destination logical
address. The driver may need to allocate a block of memory to read the
custom data into prior to moving it to the destination shared RAM in
the adapter using word or doubleword moves. The ReadRoutine returns
an error code if the driver attempts to read beyond the end of the
custom data.

The custom data file is not interpreted in any way by NetWare, and
may be in any form. The custom data file is typically raw machine code
that can be downloaded to a coprocessor card, and may be prepared in
any way desired, using any language processors or linkers desired.

Version 1.00

Chapter 4 +« MSL Driver Procedures

Register the Driver

The driver must register with the operating system by calling the
NetWare routine RegisterServerCommDriver (described in detail in
Chapter 5). Four entry points into the MSL driver are passed with this
call:

DriverSend
DriverBuildSend
DriverEmergencySend
DriverControl

In addition, an MSLResourceTag is required which allows the OS to
track all of the MSL-requested OS resources.

Schedule Callbacks

Drivers use the ScheduleNoSleepAESProcessEvent routine to schedule
callbacks to the DriverTimeOut procedure. This driver procedure is
used to detect and recover from timeout conditions. After the card is
operational, the callback procedure monitors the adapter’s performance.
If a significant delay occurs in the adapter’s operation, the procedure
may intervene and cause a retry or notify the OS of the error.

An AESEventStructure and AESProcess resource tag are required to
schedule the driver callback. (See the DriverTimeOut description later
in this chapter for more information.)

Return Initialization Status

A return status of zero in EAX indicates a successful initialization. If
the driver returns a non-zero status (indicating an error), the driver is
removed from server memory. This allows a module’s initialization
routine to prevent the OS from using the driver.

Version 1.00

Developer’s Guide for NetWare SFT Ill Mirrored Server Link Drivers

Note:

Error Reporting and Recovery

Reporting Errors - Errors that occur during initialize can be reported
at the console using the support routine OutputToScreen or optionally
QueueSystemAlert (see Chapter 5). The driver is passed a
ScreenHandle when NetWare calls the Driverlnitialize routine. The
handle should be saved by the driver for use only during the driver
initialization routine.

The OS routine QueueSystemAlert can be called at any time from any
level of execution, including from an ISR, and does not require a Screen
Handle.

Recovering from Errors - If an error occurs during initialization, all
hardware resources allocated from the server must be returned using
DeRegisterHardwareOptions. The driver must also free allocated
interrupts by calling ClearHardwarelnterrupt and return any memory
that has been allocated. Any scheduled AES timers must also be
canceled by calling CancelNoSleepAESProcessEvent. In addition, the
adapter should be disabled so that it cannot interfere with the operation
of the server.

Version 1.00

Chapter 4 +« MSL Driver Procedures

Driverlnitialize Summary

1

10

11

Save any parameters passed on the stack from the OS that are
needed for later use.

Allocate all resource tags required by the driver.

Verify that the operator is not attempting to load more adapters
than the driver will support.

(Optional) Call GetHardwareBusType to determine the bus type of
the processor. This is used by drivers which can support cards on
multiple bus types. It may also be desirable to verify that the bus
type of the server is compatible with the driver being loaded.

(Optional) Allocate any required memory (if not statically defined
in the driver data segment) using AllocSemiPermMemory.

Determine the Hardware Configuration

(a) For MCA or EISA machines, search the slots for the adapter ID
and build a slot list for the AdapterOptionStructure.

(b) Get the hardware configuration information or slot to use by
calling ParseDriverParameters with the appropriate NeedBitMap
value and AdapterOptionStructure. This call fills in the
I0ConfigurationStructure with the selected values.

(c) For MCA or EISA adapters the slot field in the IOConfiguration-
Structure now contains the appropriate slot number which can

be used to determine the configuration information by...

¢ reading the POS registers for MCA
¢ reading the configuration block for EISA

Call RegisterHardwareOptions to reserve the options and check for
any hardware conflicts.

Register the driver’s ISR by calling SetHardwarelnterrupt.
Initialize and test the adapter hardware.

(Optional) Read firmware or other custom data from the Custom
Data File and load into the coprocessor. Start the coprocessor

executing the loaded firmware.

Register the driver with the OS using RegisterServerCommUDriver.

Version 1.00

Developer’s Guide for NetWare SFT Ill Mirrored Server Link Drivers

12 Initialize two global variables:

* MaxCommDriverDateLength
¢ PacketSizeDriverCanHandle

14 Schedule driver callback timers (for driver timeout recovery) using
ScheduleNoSleepAESProcessEvent or ScheduleSleepAES-

ProcessEvent.

15 Return initialization status to the operating system.

Error Steps

A Cancel any active driver callback AES timers using either
CancelNoSleepAESProcessEvent or CancelSleepAESProcessEvent,
depending on the AES timer type.

B Unhook the driver’s ISR by calling ClearHardwarelnterrupt.

C Release registered hardware resources to the OS by calling
DeRegisterHardwareOptions.

D Return any dynamically allocated memory back to OS by calling
FreeSemiPermMemory.

E Return to the OS with an error status (EAX = non-zero value).

4-8 Version 1.00

Chapter 4 +« MSL Driver Procedures

Example
;**
; = Driverlnitialize *
;**
.o x *
r
;* Stack Parameters: *
P *
B = Parm0 = ModuleHandle Parm5 = LoadableModuleFileHandle *
;* Parml = ScreenHandle Parm6 = ReadRoutine *
9 & Parm2 = CommandLine Parm7 = CustomDataOffset B3
;* Parm3 = (reserved) Parm8 = CustomDataSize *
P Parm4 = (reserved) *
P *
;**
Align 16
DriverInitialize proc

CPush

mov ebp, esp
pushfd

cli

;**

;* Allocate all resource tags used by MSL &3
;**
push MSLSignature

push OFFSET RTagMessage_MSL

push [ebp + Parm0]

call AllocateResourceTag

add esp, 3 * 4

or eax, eax

mov MSLDriverResourceTag, eax

mov ebx, OFFSET ErrorGettingRTag_MSL

jz DisplayMessageExit

push IORegistrationSignature

push OFFSET RTagMessage_IORegistration

push [ebp + Parm0]

call AllocateResourceTag

add esp, 3 * 4

or eax, eax

mov DriverConfiguration.CIOResourceTag, eax
mov ebx, OFFSET ErrorGettingRTag_IORegistration
jz DisplayMessageExit

push InterruptSignature

push OFFSET RTagMessage_Interrupt

push [ebp + Parm0]

call AllocateResourceTag

add esp, 3 * 4

or eax, eax

mov InterruptResourceTag, eax

mov ebx, OFFSET ErrorGettingRTag_Interrupt
jz DisplayMessageExit

push TimerSignature

push OFFSET RTagMessage_Timer

push [ebp + Parm0]

call AllocateResourceTag

add esp, 3 * 4

or eax, eax

mov IntHoldOffEvent.TResourceTag, eax

mov ebx, OFFSET ErrorGettingRTag_Timer

Jjz DisplayMessageExit

Version 1.00 4-9

Developer’s Guide for NetWare SFT Ill Mirrored Server Link Drivers

push AESProcessSignature

push OFFSET RTagMessage_AESProcess

push [ebp + ParmO]

call AllocateResourceTag

add esp, 3 * 4

or eax, eax

mov TimeOutEvent .AESRTag, eax

mov HoldOffEvent .AESRTag, eax

mov ebx, OFFSET ErrorGettingRTag_AESProcess
Jjz DisplayMessageExit

;**

;* Parse which port and interrupt to use *
;**

push [ebp + Parml]

push [ebp + Parm2]

push NeedsIOPortOBit OR NeedsInterruptOBit
push 0

push 0

push OFFSET AdapterOptions

push 0

push OFFSET DriverConfiguration

call ParseDriverParameters

add esp, 8 * 4

or eax, eax

mov ebx, OFFSET ErrorParsingIOMessage
jnz DisplayMessageExit

;**

;* Register Hardware Options w
;**

push 0

push OFFSET DriverConfiguration

call RegisterHardwareOptions

add esp, 2 * 4

or eax, eax

mov ebx, OFFSET ConflictingHardwareMessage
jnz DisplayMessageExit

;**

;¥ Set Interrupt Vector &
;**

push OFFSET ExtraEOIFlag

push CHAIN_SET_REAL_MODE

push 0

push InterruptResourceTag

push OFFSET DriverISR

movzx eax, BYTE PTR DriverConfiguration.CInterruptO
push eax

call SetHardwareInterrupt

add esp, 6 * 4

or eax, eax

mov ebx, OFFSET ErrorGettingInterruptMessage
jnz DeRegisterHardware

;**

;* Initialize and Test the MSL Adapter &

;**

call HardwareInit ;returns ptr to error message
jnz DriverInitHardwareError
mov FirstTimeInit, O ;jdisable testing the adapter

;hardware again

4-10 Version 1.00

Chapter 4 +« MSL Driver Procedures

;**

;* Register the MSL driver with the 0OS *

;**

push OFFSET DriverControl

push OFFSET DriverEmergencySend

push OFFSET DriverBuildSend

push OFFSET DriverSend

push OFFSET DriverConfiguration

push MSLDriverResourceTag

call RegisterServerCommDriver

add esp, 6 * 4

or eax, eax

mov ebx, OFFSET ErrorRegisteringMSLMessage

jnz ErrorRegisteringDriver

mov MaximumCommDriverDataLength, MAX PACKET_SIZE
mov PacketSizeDriverCanNowHandle, MAX PACKET_SIZE

;**

;* Start Timeout Callbacks *
;**

push OFFSET TimeOutEvent
call ScheduleNoSleepAESProcessEvent
add esp, 1 * 4

;**
;* DriverInitialize Successful Exit *
;**

popfd

XOr eax, eax ; Return Success!
CPop

ret

LR i i i e i b I b i I i I b e b i i e i I R e i B b R i i b i i i S b R B e b B b b i i

7
;* DriverInitialize Error Paths *
;**

ErrorRegisteringDriver:
DriverInitHardwareError:

;**

; * Unhook from Interrupt vector *
;**

push OFFSET DriverISR

movzx eax, BYTE PTR DriverConfiguration.CInterruptO
push eax

call ClearHardwareInterrupt

add esp, 2 * 4

;**

; * Deregister hardware options from OS *
;**

DeRegisterHardware:

push OFFSET DriverConfiguration
call DeRegisterHardwareOptions
add esp, 1 * 4

Version 1.00 4-11

Developer’s Guide for NetWare SFT Ill Mirrored Server Link Drivers

;**

;* Display Error Message in EBX 3
;**

DisplayMessageExit:
push ebx ; Pointer to error string
push [ebp + Parml] ; Screen Handle
call OutputToScreen ; Display Error Message
add esp, 2 * 4
popfd
or eax, -1 ; Return Failure
CPop
ret
DriverInitialize endp

;**

; * Hardwarelnit *

;**
HardwareInit proc

; (Adapter-specific code to bring up adapter to operational mode)
HardwareInitSuccess:

Xor eax, eax

ret

HardwareInitError:

mov ebx, OFFSET HardwareInitErrorMessage
or eax, -1
ret

HardwareInit endp

4-12 Version 1.00

Chapter 4 +« MSL Driver Procedures

DriverControl

[Non-Blocking]

Syntax long DriverControl (Parm0, Parml, ,,) ;
Parameters Parm0 = Function_Number

Specifies which control function is being requested.
0 = GetMSLConfiguration
1 = GetMSLStatistics

Parm1 = Buffer_Pointer
Pointer to the buffer to copy Configuration or Statistics.

If pointer=0, return size of Configuration or Statistics.

(All other parameters are function-dependent)

Return Value EAX contains a completion code.

EAX = 0 (Success)

EAX = Size
If Parml1 is zero, return the size of the structure or table.

EAX = OFFFFFF81lh (BAD_COMMAND)
Bad Function_Number was passed

Requirements Called at process level.
Description The MSL DriverControl interface routine is the entry point for all the
driver’s control subroutines. The driver must implement the

GetMSLConfiguration and GetMSLStatistics procedures, both detailed
in this section. These procedures provide statistical and configuration
information to the caller.

GetMSLConfiguration provides the original caller with a copy of the
MSL configuration structure in the buffer specified by Buffer_Pointer.
If the pointer is zero, just return the size of the configuration structure
in EAX.

GetMSLStatistics provides the original caller with a copy of the MSL
statistics table in the buffer specified by Buffer_Pointer. If the pointer
is zero, just return the size of the statistics table in EAX.

Version 1.00 4-13

Developer’s Guide for NetWare SFT Ill Mirrored Server Link Drivers

Example

Align 16

;
7
7
7
;* Function 0 = GetMSLConfiguration
;* Function 1 = GetMSLStatistics
.k
’
;* Stack Parameters:
g Parm0 = Function Number
.-k
4
B = If pointer=0,
;*
.-k
4
Align 16
DriverControl proc
CPush
mov ebp, esp
pushfd
cli
mov ebx, [ebp + ParmO]
cmp ebx, MaxControlNumber
ja InvalidControlProcedure

call ControlProcedures [ebx * 4]

DriverControlExit:
popfd
CPop
ret

InvalidControlProcedure:

mov eax, BAD_COMMAND

’-**

;* Control Procedure Vector Information *
;**

ControlProcedures dd GetMSLConfiguration
dd GetMSLStatistics
ControlProceduresEnd equ S
MaxControlNumber equ ((ControlProceduresEnd-ControlProcedures) /4) -1

hhkhhkhkhkhkhkhkhkkhkhkhhkhhhhk bk hk bk hkhkhkhkhkhhkhkh bk h bk hk bk hhkhkhkhkhkhkhkhhkhhkhk bk hkhkhkhkhkhkhkhkhkhkdhhkhhkrhkhkhkhkhkkhkhhk*xk

* DriverControl
R R SRS S S S SRS S S SRR RS SRR EEEEE R R R R R R R R R R R R R R R R I i I

Parml = Pointer to the buffer to copy Configuration or Statistics.
return size of Configuration or Statistics.

Ahk Ak Ak Ak hkhkhkhkhkhkhk bk Ak h kA ok k ok hkhkhkhkhk bk hkhkhkhkkkhkhkhkhkhkhkhhkhhkhkhdhkhkhkhkhkhkhkhkhkhhkrkhkrhkkkhkkhkhhkhhhhhx

;save C registers
;get stack base

;save flag state
;jclear interrupts

;get requested function #
;jcheck if request is valid
;Jump if not

;table thru routine

;restore flags
;jrestore registers

;flag invalid status

*

*

*
*
*
*
*
*
*
*
*

Jjmp DriverControlExit
DriverControl endp
4 - 14 Version 1.00

Chapter 4 +« MSL Driver Procedures

Example (continued)

;**

g = GetMSLConfiguration - Driver control procedure 0 &
’-**

Align 16
GetMSLConfiguration proc

mov edi, [ebp + Parml]

or edi, edi

Jjz SHORT GetMSLConfigurationSize
mov ecx, DriverConfigurationSize
mov esi, OFFSET DriverConfiguration

rep movsb

XOor eax, eax
ret

GetMSLConfigurationSize:

mov eax, DriverConfigurationSize

ret

GetMSLConfiguration endp

;~k*~k~k~k~k~k**********************************

B GetMSLStatistics - Driver control procedure 1 5
’-**

Align 16
GetMSLStatistics proc

mov edi, [ebp + Parml]

or edi, edi

jz SHORT GetMSLStatisticsSize
mov ecx, DriverStatisticsSize
mov esi, OFFSET DriverStatistics

rep movsb
Xor eax, eax
ret
GetMSLStatisticsSize:
mov eax, DriverStatisticsSize

ret

GetMSLStatistics endp

;get buffer pointer
;get size only? (edi=0)
;jump if so

;copy the configuration

;jget configuration size

;get buffer pointer

;jget size only? (edi=0)
;jump if so

;copy the statistics

;jget statistics size

Version 1.00

4-15

Developer’s Guide for NetWare SFT Ill Mirrored Server Link Drivers

DriverSend
[Non-blocking]

On Entry

On Return

Requirements

Description

The following registers contain the message header parameters to be
sent to the other server.

EAX Parameter

EBX Parameter

ECX Parameter (length of message data, may be zero)
EDX Parameter

ESI Parameter (address of message data)

EDI Parameter

EAX must be set to zero if successful. A non-zero value indicates
failure and the driver must call ServerCommUDriverError.

All registers may be modified upon return except segment registers,
the stack pointer, and EAX (which must have the completion code).

The OS will call this routine at either Interrupt or Process level.
Interrupts will be disabled and are required to remain disabled.

This procedure is called by the SFT III operating system to send a
single message to the other server. On entry to the DriverSend routine,
the registers EAX, EBX, ECX, EDX, ESI, and EDI contain the
parameter values for the message header to be sent to the other server.
These 6 registers will be used by the receive routine in the other server
when calling ReceiveServerCommdPointer.

The driver must copy the message header and message data (if any) to
the adapter and initiate the packet’s transmission. ECX is the length
of the message data in bytes and ESI contains the address of the data
(if the length is non-zero).

The driver completely controls the server’s ability to call the DriverSend
and DriverBuildSend procedures by controlling the value of the global
variable PacketSizeDriverCanNowHandle as follows:

DriverSend cannot be called by the OS

zZero DriverSend can send a message header only (no data)
> zero = DriverSend can send a message header plus data up
to the number of bytes indicated by
PacketSizeDriverCanNowHandle.

negative

The OS may call DriverSend any time the value in PacketSizeDriver-
CanNowHandle will accommodate a message the OS has queued to
send. The operating system will attempt to send more than one
message without waiting for an acknowledgment unless prevented by

4-16

Version 1.00

Chapter 4 +« MSL Driver Procedures

Note:

Example

the driver. The driver prevents this by placing a negative value in

PacketSizeDriverCanNowHandle.

The driver should not attempt to use the send procedure’s execution

time to receive a packet. It should simply validate the packet, place the
packet data into its transmit buffer, initiate the transmission sequence,

and return.

;**

; ~ DriverSend

IR R SR EEE DR ST RS TR S S

*

r

;

Bw On Entry: On Exit:

.o %

4

g EAX = 0OS parameter EAX = Not saved
g EBX = OS parameter EBX Not saved
g ECX = OS parameter/Length of Message Data ECX Not saved
g EDX = OS parameter EDX Not saved
He EBP = Not Defined EBP Not saved
g ESI = OS parameter/Pointer to Message Data ESI Not saved
g EDI = OS parameter EDI = Not saved
.o %

4

B= Interrupts Disabled

.o %
(***

~

Align 16
DriverSend

mov
mov
inc

;**

proc

PacketSizeDriverCanNowHandle, -1
TxPacketMessageCount, 1
TransmitMsgCount

;* Build Message Packet in Transmit Buffer

;**

; Note:
; even if the channel is busy with another transmit

(Setup packet header and message header in transmit buffer here)

or
jz

(Copy message data to transmit buffer here:

DriverSendReady:

call
inc
XOor
ret

DriverSend

this code assumes the hardware can accept loading of message data

ecx, ecx ;any data with message?
;skip data copy if not

DriverSendReady

TransmitMessagePacket
TransmitPacketCount
eax, eax

endp

ecx=size

esi=addr)

;inform OS we’re busy
; sending one message
;update statistics counter

*

*

*
*
*
*
*
*
*
*
*
*
*
*
*

*

Version 1.00

4-17

Developer’s Guide for NetWare SFT Ill Mirrored Server Link Drivers

Example (continued)

;**

; = TransmitMessagePacket *

,-**

Align 16

TransmitMessagePacket proc
cmp TransmitInProgress, TRUE ;if a transmit is in progress...
je PutMessageTransmitOnHold ;...Jjump (can’t send msg now)

(Initiate the transmit of the loaded message packet here)

,-**

;* Begin watching for Adapter Timeout Errors &
,-**

mov TransmitInProgress, TRUE
mov TimeOutEvent .AdapterTimeOutTime, ADAPTER_TIMEOUT_COUNT

;**

;* Begin watching for Message Timeout Errors &
;**

mov MessageInProgress, TRUE

mov eax, ServerCommACKTimeOut

mov TimeoutEvent .MessageTimeoutTime, ax
mov MessageTransmitPending, FALSE

ret

PutMessageTransmitOnHold:

mov MessageTransmitPending, TRUE
ret
TransmitMessagePacket endp

DriverSend Summary
Transmit a single message

1 Stop OS from sending anything
(PacketSizeDriverCanNowHandle = -1)
(Not mandatory if dual port transmit buffer)
TxPacketMessageCount — 1
Increment statistics counter (TransmitMsgCount)
Build media-required header in transmit buffer
Build message header (6 registers, 24 bytes)
Check ECX for data to copy?
-yes: copy data to adapter
-no: skip
7 Check if channel is available
-yes: transmit packet
-no: set MessageTransmitPending flag and exit
8 Start transmit timeout sequence as soon as transmit is sent
9 Return status to OS

Y T W IN

4-18 Version 1.00

Chapter 4 +« MSL Driver Procedures

DriverBuildSend

[Non-blocking]

On Entry

On Return

Requirements

Description

The following registers contain the message header parameters to be
sent to the other server.

EAX Parameter

EBX Parameter

ECX Parameter (length of message data, may be zero)
EDX Parameter

ESI Parameter (address of message data)

EDI Parameter

EAX must be set to zero if successful. A non-zero value indicates
failure and the driver must call ServerCommUDriverError.

All registers may be modified upon return except segment registers,
the stack pointer, and EAX (which must have the completion code).

This procedure is called at interrupt level. Interrupts will be disabled
and are required to remain disabled. The driver must not use this
procedure’s execution time to receive a packet.

The DriverBuildSend procedure is used to build multi-message packets.
The operating system queues messages when the driver is busy
transmitting another message. After the DriverISR receives a message
acknowledgement and notifies the OS (by calling SendServerComm-
CompletedPointer), it must obtain any queued messages by calling
GetNextPacketPointer.

If there are messages queued, calling this procedure initiates a possible
multimessage building sequence. During GetNextPacket the Driver-
BuildSend procedure is called repeatedly to build the multimessage
packet. GetNextPacket will stop calling the DriverBuildSend routine
only when the driver indicates, through the value in PacketSizeDriver-
CanNowHandle, that it has no more room for additional messages or
when the OS has no more messages to send.

The DriverBuildSend procedure must copy the message header and
message data (if any) to the transmit buffer. On entry, the registers
EAX, EBX, ECX, EDX, ESI, and EDI contain the parameter values for
the message header. The message data length (in bytes, not including
the header) is in ECX, and the message data address (assuming ECX
is not zero) is in ESI. DriverBuildSend must then update the Packet-
SizeDriverCanNowHandle variable and return.

Version 1.00

4-19

Developer’s Guide for NetWare SFT Ill Mirrored Server Link Drivers

Note:

1
1
1
(after notifying OS of an '
1

MSL drivers should place a limit on the maximum number of messages
transmitted in a multi-message packet. Because the driver operates
with interrupts disabled during this procedure, as well as during
message processing, allowing an unlimited number of messages may
prevent other critical processes from executing in a timely manner.
This can cause significant degradation in operating system performance
and may result in mirrored server failures.

As a starting point, we recommend using a maximum of 128 messages
per packet and optimizing for the particular MSL design. The optimum
value will vary from driver to driver.

The DriverBuildSend procedure and its interaction with the DriverISR
and GetNextPacket code is illustrated in the flow diagram below.

DriverISR DriverBuildSend GetNextPacket

Acknowledgement)

Does OS have any
No messages queued?
(check value of
PacketSizeNowAvailable)
Yes

Set up for
multi-message
packet
transmission

v

Call OS via
GetNextPacketPtr

Set registers to OS
message header

P parameters —

v

Call
DriverBuildSend

Copy message header
and message data

to packet]

v

Adjust
PacketSizeDriver-
CanNowHandle
variable

Does next
message fit?

No

Transmit loaded
multi-message
packet ¢

Version 1.00

Chapter 4 +« MSL Driver Procedures

Example

PR R R B R i i i R S I i i i R i e S I R S i i I b e b R B e S b I b R S b b b I b

;* DriverBuildSend

ek hkhkhkhhkhk kA hkhk Ak hkhkhhhkhhhkhkh Ak hk Ak hkhkhhkhkhhhkhkhhkhkhk bk hkhkrhkhkhkhkhkhkhkhkhkhkhkhkhkrhkhkhkhkhkhkhhkhkhkhkhkhkrhkkhhhkhxkxx

*

4

12

B= On Entry: On Exit: B
Pi* *
B= EAX = OS parameter EAX = Not saved B
g% EBX OS parameter EBX = Not saved =
g & ECX 0S parameter/Length of Message Data ECX = Not saved &5
g% EDX OS parameter EDX = Not saved =
B EBP Not Defined EBP = Not saved &
g = EST 0S parameter/Pointer to Message Data ESI = Not saved &
B= EDI = OS parameter EDI = Not saved B
.k *
4

;* Interrupts Disabled &
.k *
(**

r

Align 16

DriverBuildSend proc

(Build Message Header)

or
jz

(Copy Message Data to adapter:

ecx, ecx
DriverBuildSendDone

ecx=size

DriverBuildSendDone:

inc
inc
cmp
je

sub
sub

XOor
ret

TransmitMsgCount
TxPacketMessageCount

TxPacketMessageCount,
HitMaxMessageCount

PacketSizeDriverCanNowHandle,

HitMaxMessageCount:

mov

XOor
ret

PacketSizeDriverCanNowHandle, ecx
eax, eax
PacketSizeDriverCanNowHandle, -1

eax, eax

DriverBuildSend endp

MAX_MESSAGE_

MESSAGE_HEADER_SIZE

*

*

;any data with message
;skip data copy if not

esi=addr)

;update statistics counter
;jupdata message count

COUNT ;max # of messages yet?
;jump if so

;indicate success
;jreturn to OS

;indicate no more msgs
;in this packet

;jreturn to OS

Version 1.00

Developer’s Guide for NetWare SFT Ill Mirrored Server Link Drivers

DriverEmergencySend

[Non-blocking]

Parameters

Return Values

Requirements

None

None (This procedure must return; it will be returning to Abend)

This procedure can be called at either Process or Interrupt level.
Interrupts are disabled on entry and must remain disabled.

The DriverEmergencySend procedure is called by the SFT III operating
system to notify the other server that this server is no longer
operational. It may be called at ANY time.

The DriverEmergencySend procedure should make its best attempt to
send an emergency packet or signal informing the other server of the
emergency. If necessary, the driver may loop with interrupts disabled
waiting for an operation such as a transmit to complete in order to
implement this function. However, care must be taken to avoid an
endless loop. The driver can also abort a function to send the
emergency signal.

If the driver is unable to successfully send the emergency packet, it
must still return to the caller. Avoid performing any operations that
could cause a machine lockup or prevent the return to the caller.

Some drivers may not be able to implement this feature, but it is
essential to accelerating the fault tolerance handling and recovery of
SFT III.

Receiving an Emergency Notification

When an MSL driver receives an emergency notification packet, it
notifies the OS of the emergency by calling the ServerCommDriverError
routine (described in Chapter 5).

If the driver is in a message holdoff state when an emergency
notification packet is received, ServerCommDriverError must not be
called until all heldoff messages that have already been acknowledged
are delivered to the operating system. Otherwise, there is a potential
for divergence of the two servers’ states, which would destroy the
mirror.

Description
Important !
4-22

Version 1.00

Chapter 4 +« MSL Driver Procedures

Example

;**

; » DriverEmergencySend *

;**

Align 16

DriverEmergencySend proc
cmp TransmitInProgress, FALSE ;if not transmitting now
je EmergencySendReady ;fire Emergency packet
mov ecx, MAX_EMERGENCY_WAIT ;set adapter specific wait

; (this is the maximum loop time
; required to complete a transmit)
EmergencySendWaitLoop:
in al, 61h ;else waste time
in al, 6lh ; (same for all speed machines)
(Read Adapter Status)
(If transmit channel is now available....jmp EmergencySendReady)

loop EmergencySendWaitLoop

ForceEmergencySend:

(If possible, cancel the adapter’s current transmission and force send)

EmergencySendReady:
(Transmit the Emergency Notification)

ret

DriverEmergencySend endp

Version 1.00 4-23

Developer’s Guide for NetWare SFT Ill Mirrored Server Link Drivers

DriverEmergencySend Summary

The goal of the Emergency Notification is to notify the other server of
this servers failure as soon as possible. If needed, the driver may delay,
but it should make a best attempt to send the emergency packet.
However, interrupts must remain disabled and the driver must not wait
indefinitely.

1 If the transmit channel is available:

Send the Emergency Notification packet, then exit.

2 If the transmit channel is not available:

Delay up to the maximum wait time for the channel to be made
available (don’t wait forever).

If the channel is still not available, either try to force a send or
exit. (Do not force the send if doing so could cause the machine
or the bus to hang.)

4-24 Version 1.00

Chapter 4 +« MSL Driver Procedures

DriverISR

The driver’s Interrupt Service Routine, DriverISR, is called by the
system ISR (which actually receives the interrupt) for all hardware
interrupts. An interrupt may indicate one of the following events:

Message packet received
Acknowledgment received
Holdoff notification received
Emergency notification received
Reception error encountered
Transmission complete
Transmission error encountered

Each of these cases is detailed on the following pages. (Some adapters
may not generate an interrupt for each of the above events.) An
example of an MSL driver’s interrupt service routine can be found in
th